201 research outputs found

    Generating descriptive text from functional brain images

    Get PDF
    Recent work has shown that it is possible to take brain images of a subject acquired while they saw a scene and reconstruct an approximation of that scene from the images. Here we show that it is also possible to generate _text_ from brain images. We began with images collected as participants read names of objects (e.g., ``Apartment'). Without accessing information about the object viewed for an individual image, we were able to generate from it a collection of semantically pertinent words (e.g., "door," "window"). Across images, the sets of words generated overlapped consistently with those contained in articles about the relevant concepts from the online encyclopedia Wikipedia. The technique described, if developed further, could offer an important new tool in building human computer interfaces for use in clinical settings

    Using Wikipedia to learn semantic feature representations of concrete concepts in neuroimaging experiments

    Get PDF
    AbstractIn this paper we show that a corpus of a few thousand Wikipedia articles about concrete or visualizable concepts can be used to produce a low-dimensional semantic feature representation of those concepts. The purpose of such a representation is to serve as a model of the mental context of a subject during functional magnetic resonance imaging (fMRI) experiments. A recent study by Mitchell et al. (2008) [19] showed that it was possible to predict fMRI data acquired while subjects thought about a concrete concept, given a representation of those concepts in terms of semantic features obtained with human supervision. We use topic models on our corpus to learn semantic features from text in an unsupervised manner, and show that these features can outperform those in Mitchell et al. (2008) [19] in demanding 12-way and 60-way classification tasks. We also show that these features can be used to uncover similarity relations in brain activation for different concepts which parallel those relations in behavioral data from human subjects

    Generating Text from Functional Brain Images

    Get PDF
    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively

    A Unified Theory of Dual-Process Control

    Full text link
    Dual-process theories play a central role in both psychology and neuroscience, figuring prominently in fields ranging from executive control to reward-based learning to judgment and decision making. In each of these domains, two mechanisms appear to operate concurrently, one relatively high in computational complexity, the other relatively simple. Why is neural information processing organized in this way? We propose an answer to this question based on the notion of compression. The key insight is that dual-process structure can enhance adaptive behavior by allowing an agent to minimize the description length of its own behavior. We apply a single model based on this observation to findings from research on executive control, reward-based learning, and judgment and decision making, showing that seemingly diverse dual-process phenomena can be understood as domain-specific consequences of a single underlying set of computational principles
    corecore